Laminar-to-turbulent transition of pipe flows through puffs and slugs

نویسندگان

  • MINA NISHI
  • B ÜLENT ÜNSAL
  • FRANZ DURST
  • M. Nishi
  • B. Ünsal
چکیده

Laminar-to-turbulent transition of pipe flows occurs, for sufficiently high Reynolds numbers, in the form of slugs. These are initiated by disturbances in the entrance region of a pipe flow, and grow in length in the axial direction as they move downstream. Sequences of slugs merge at some distance from the pipe inlet to finally form the state of fully developed turbulent pipe flow. This formation process is generally known, but the randomness in time of naturally occurring slug formation does not permit detailed study of slug flows. For this reason, a special test facility was developed and built for detailed investigation of deterministically generated slugs in pipe flows. It is also employed to generate the puff flows at lower Reynolds numbers. The results reveal a high degree of reproducibility with which the triggering device is able to produce puffs. With increasing Reynolds number, ‘puff splitting’ is observed and the split puffs develop into slugs. Thereafter, the laminar-to-turbulent transition occurs in the same way as found for slug flows. The ring-type obstacle height, h, required to trigger fully developed laminar flows to form first slugs or puffs is determined to show its dependence on the Reynolds number, Re=DU/ν (where D is the pipe diameter, U is the mean velocity in the axial direction and ν is the kinematic viscosity of the fluid). When correctly normalized, h turns out to be independent of Reτ (where h + =hUτ/ν, Reτ =DUτ/ν and Uτ = √ τw/ρ; τw is the wall shear stress and ρ is the density of the fluid).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed percolation describes lifetime and growth of turbulent puffs and slugs.

We show that directed percolation (DP) simulations in a pipe geometry in 3+1 dimensions capture the observed complex phenomenology of the transition to turbulence. At low Reynolds numbers (Re), turbulent puffs form and spontaneously relaminarize. At high Re, turbulent slugs expand uniformly into the laminar regions. In a spatiotemporally intermittent state between these two regimes of Re, puffs...

متن کامل

Slug genesis in cylindrical pipe flow

Transition to uniform turbulence in cylindrical pipe flow occurs experimentally via the spatial expansion of isolated coherent structures called ‘slugs’, triggered by localised finite-amplitude disturbances. We study this process numerically by examining the preferred route in phase space through which a critical disturbance initiates a ‘slug’. This entails first identifying the relative attrac...

متن کامل

Distinct large-scale turbulent-laminar states in transitional pipe flow.

When fluid flows through a channel, pipe, or duct, there are two basic forms of motion: smooth laminar motion and complex turbulent motion. The discontinuous transition between these states is a fundamental problem that has been studied for more than 100 yr. What has received far less attention is the large-scale nature of the turbulent flows near transition once they are established. We have c...

متن کامل

Intermittency in the Transition to Turbulence

It is commonly known that the intermittent transition from laminar to turbulent flow in pipes occurs because, at intermediate values of a prescribed pressure drop, a purely laminar flow offers too little resistance, but a fully turbulent one offers too much. We propose a phenomenological model of the flow, which is able to explain this in a quantitative way through a hysteretic transition betwe...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008